
УДК:577.35 

 

MICROGRAVITATIONAL NEUROGONIOMETRY AS A NOVEL MEASUREMENT 

TOOL FOR THE COMPLEX MORPHOFUNCTIONAL, MORPHOBIOCHEMICAL AND 

MORPHOPHYSIOLOGICAL STUDIES OF THE NEURON BIOPHYSICAL STATE IN 

SPACE CONDITIONS FOR EXPERIMENTS ON BIOSATELLITES 

 

Oleg V. Gradov, Eugeny D. Adamovich 

 

Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia 

  

O.V. Gradov 

38/2 Leninsky prospekt, Moscow, Russia 119334 

E-mail: gradov@center.chph.ras.ru, gradoff@bioinformatics.ru 

 

Abstract. The effect of weightlessness / microgravity on the characteristics of the charge 

transfer across the neuron membrane is well known in space biology and medicine. In the absence 

of any gradients determining the growth directions of the neurites the neuron has a spherical shape 

characterized by the minimal surface. From the standpoint of functional morphology, it seems 

reasonable to design a system for a simultaneous monitoring of the electrobiophysical / 

electrophysiological and neuromorphological state of the brain neuronal structure, nervous tissue 

culture or the living slices directly in the microgravity / weightlessness conditions during the space 

flight. We have earlier developed a five-axis robotic positioning system for measurements on the 

living slices and tissue cultures, which demonstrated the dependence of the certain structure 

morphogenesis on its orientation in the gravitational field and external fields, as well as its 

correlation with the directed electrophysiological activity. The above system can be easily adapted 

to the astrophysical microgravity conditions. 
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Background 

 

The effect of weightlessness / microgravity on the characteristics of the charge transfer 

across the neuron membrane is well known in space biology and medicine (Wallace, 1995). In some 

cases this leads to the disorders in the neuron morphogenesis and the neurites' orientation due to the 

lack of the native forces which normally affect the neuron morphogenesis, resulting in 

disorientation in the gravitational field and significant changes in the normal diffusion and 

biorheological parameters (Sanderson, 1990; Crestini, 2004; Horn, 2006; Ranjan, 2014). In the 

absence of any gradients (Baier, 1992; Tessier-Lavigne, 1992; Baier, 1995; Bravo, 1997; Goodhill, 

1998; Rosentreter, 1998; Legg, 2003; Davis, 2003; Goodhill, 2004; Flanagan, 2006; Suter, 2007; 

Thivierge, 2007; Caviness, 2009; Sundararaghavan, 2009; Millet, 2010; Martínez-Morales, 2011; 

Snyder, 2011; Keenan, 2012; Charvet, 2014; Kim, 2015) determining the growth directions and 

morphogenesis of the neurites the neuron has a spherical (Sala, 1990) shape characterized by the 

minimal surface (Sabitov, 1967) in homogeneous spaces (Van, 1989). Thus, in this case there is a 

topological transition since in the natural conditions of the orientated growth the tubular shape is the 

most probable one from the physical principles (Borisovich, 1997; Klyachin, 1997). 

The authors have found and examined a series of slides in the collection of the former Brain 

Research Institute (Brain neuronal structure laboratory). According to the private communications 

which refer to the morphometric papers (Belichenko, 1988, 1989, 1991) describing the results 

obtained on the biomaterials from the biosatellite "Kosmos-1667" ("Bion-7"), the prolonged flight 

causes a partial involution of the neurites and spines leading to the pseudo-spherical neuron shape 

(see also clippings from contemporary works in the Figure 1). 

 

 
   

Figure 1.  Some typical pseudo-spherical neuron shapes from microgravitational conditions: A – 

adapted from (Ranjan, 2014); B – adapted from (Pani, 2013). Copy from the convolute archive of 

E.D. Adamovic. 

 

General Principles 

 

From the standpoint of functional morphology and a morphophysiological trend in the 

multivariate data analysis in situ, it seems reasonable to design a system for a simultaneous 

monitoring of the electrobiophysical / electrophysiological and neuromorphological state of the 

brain neuronal structure, nervous tissue culture or the living slices directly in the microgravity / 

weightlessness conditions during the space flight. We have earlier developed a five-axis robotic 

positioning system for measurements on the living slices and tissue cultures (Notchenko, 2013; 

Gradov, 2014; Gradov, 2014a; Oganessian, 2014), which demonstrated the dependence of the 



certain structure morphogenesis on its orientation in the external fields, as well as its correlation 

with the directed electrophysiological activity. The above system can be easily adapted to the 

weightlessness conditions. 

We have already performed a calculation and design of the culture box – lab-on-a-chip – and 

a vital electrophysiological system for stereotactic positioning, which allow to study the coupled 

(morphofunctional / morphophysiological) changes in the electrophysiological activity modes and 

in the morphological / morphometric parameters of the neuronal structures (both in vivo or in situ, 

as well as in vitro on the living slices or tissue cultures) in the space flight conditions, as well as in 

natural conditions and under centrifugation.  

Our preliminary data about neurogoniometry has been reported at the conference (see Figure 

2) and the detailed publication of the technical documentation will also appear soon. 

 
Figure 2.  A scheme of neurogoniometry in spherical coordinates (from our conference paper and 

poster in the "International Symposium on Functional Neuroimaging – 2012" (Notchenko and 

Gradov, 2012)). 
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